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A P P L I C A T I O N  OF T H E  A V E R A G I N G  M E T H O D  IN T H E  C A L C U L A T I O N  

OF ROD S T R U C T U R E S  L I K E  PLATES AND B E A M S  

A. G. Kolpakov UDC 531.3 

A modification of the averaging method that permits one to calculate the averaged characteristics 
of periodic beam structures such as masts, skeleton spans., etc. by the methods of materials 
strength is proposed. 

In t roduc t ion .  As the inverse problem, the problems of description of rod structures such as masts, 
skeleton spans, etc. with the use of continuous models [1] have been raised in the literature owing to the 
development of theoretical and computational methods. The state of the problem up to 1988 was reported 
by Noor [2] and Pshenichnov [3]. Recently, the problem has been attacked by homogenization (averaging) 
method, which appeared in the 1970s [4-7]. 

The results obtained in the late 1980s [8-11] allow one to develop an engineering theory of rod-structure 
calculation by means of homogenization [4, 5] and classical methods of materials strength. Annin et al. [12] 
used this combination of methods to calculate plate-containing structures. 

The basic element of the homogenization method is the solution of the so-called cell problem. In [8, 9], 
the author reduced this problem to the plate/beam problem, and the arising errors were estimated. The 
interest in the problems of averaged description of rod structures makes it expedient to further develop the 
computational methods based on the averaging theory. This study is devoted to a construction of models 
of averaged description of small-thickness structures like inhomogeneous plates and beams [13, 14]. Figure 1 
gives examples of structures similar to a plate (a) and a beam (b); periodicity cells (PC) in these structures 
are plotted on the right (P1 are the regions occupied by the material, m is the period, and 7 is the lateral 
surface of the PC). 

1. Formula t ion  of t h e  P rob lem.  The major result of the mathematical averaging theory [4, 5] is the 
proof that an inhomogeneous periodic medium, in particular, a void-containing medium like the structures 
considered, can be put into correspondence with a homogeneous body close in its mechanical behavior if the 
characteristic size of the PC of the inhomogeneous body is e << 1 (Fig. 1). Caillerie [13] generalized these 
results to plates, and the author [14] to beams. We note that the parameter e also characterizes the thinness 
of the structure walls. 

The correspondence between the local elastic constants of an inhomogeneous medium aijkl(Y) and its 
averaged constants is established as follows [12-14]. We solve the following CP 

OyjO (aqtl(y) ~ON~'~ + aij11(y)y~) = 0 in PI, 

(1.1) 
(aO'l(y) oytON~'~ aiJll(Y)Y~') nj 0 - ' w - ' - +  = on "7 
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for beams, where NUa(y) is periodic in yl with period rn and (N ua) = O, and 

0 (aql~t(y)~0N:~' ai.i~O(y)~/a)~' 0in  PI, 
Oyj Oyt + = 

(1.2) 
( ON~" + a,i~,(y)y~ ) =O on7 aijki(Y ) ON ! 

for plates, where NVa~(y) is periodic in Yl and !/2 and has the PC $1 and (N va~) = 0 and v = 0, 1. Here P1 is 
the PC in the dimensionless coordinates y = x/e, 7 is its lateral surface on which the periodicity condition 
is not imposed (Fig. 1), L1 = [0, m] is the projection of the PC onto the Oyl axis for the beam, $1 is the 

1 
/ - d y  is the average over the PC P1, projection of the PC onto the Oyly2 plane for the plate, (.) = mesSp--'--~ P~ 

and Spr = LI or 5"1. 
After the cell problem is solved, the characteristics of the homogeneous body are calculated by the 

following formulas: 

~v+tJ all/d(Y) - ~ y ~  )Y~) (1.3) 

for beams [9] and 

( O-'V~'r~'~ i,\ 
= + / (1.4) 

for plates [8]. 
The superscripts v and # take the values 0 and 1; the subscripts a,/3, 7, and 6 take the values 1 and 2 

for beams and 2 and 3 for plates. Here S o . . . . . .  are the tensile-compressive rigidities, S 1 are the lateral rigidities, 
and $2. are the flexural-torsional rigidities of the averaged structures (beams and plates). 

Remark .  For a homogeneous cylindrical rod, the cell problem (1.1) and formula (1.3) are reduced to 
those obtained in [7]. For cellular shells, this approach yields the results obtained in [3] (see [12]). 

2. Reduc t ion  of t he  Cell P r o b l e m to Prob lems  of Mater ia ls  S t rength .  Problems (1.1) and (1.2) 
are the particular problems of the theory of elasticity. The specifics of these problems consists in the presence 
of constant terms of the form (O/Oyi)(aij~(y)y~) and periodic boundary conditions. These conditions cannot 
be transformed to the standard ones, except the particular cases of a symmetric PC. However, this does not 
raise problems, because the periodicity conditions can be reformulated in terms of the theory of materials 
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strength. 
In solving the cell problem, the difficulties are arisen by constant terms which correspond to nontypical 

mass forces; the latter can be eliminated for v = 0 by a known replacement {4, 5] 

W = N O + ylel  

for beams and (2.1) 

W = N ~ + yqe~ 

for plates. As a result, for displacements W we obtain, from (1.1) and (1.2), the standard equations of the 
theory of elasticity wi thout  mass forces. 

We show tha t  a replacement similar to (2.1) can be made for v = 1 (for the flexure-torsion problem) as 
well. For this purpose, it suffices to check that  there are the displacements ~ such that  the following equalities 
are fulfilled for the strains e/:l = (1/2)(O~k/Oyt + O~l/Oyk): 

for beams and 

aqm(y)em + ai j l l (y)y# = 0 

aiykt(Y)ekt + aq~,#(y)ys = 0 

for plates, or, which is equivalent to (2.2), 

for beams and 

ekl = --cmq(y)ai / l l (y)y# 

e~! ---- --eklii(y )aija#(y )ya 

for plates, where {ciim} is the  rigidity tensor inverse to (aijm}. 
It follows from (2.3) tha t  

ekt = --6k16tly3 
for beams and 

e u  = --6kl61#ys 

for plates. Here 6ii = 1 and 6ij -- 0 for i ~ j .  
It is possible to verify tha t  the strains (2.4) satisfy the classical compatibility conditions [15]. 
Thus, the unknown displacements ~ exist. Below, we write explicitly for particular cases. 
We denote by ~u~# the  following functions 

for beams and 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

~0a# = y~e#, ~a.# = { (2.6) 

for plates. It is noteworthy tha t  the function ~ depends on/3  for beams and on a and 13 for plates. 
Using the functions (2.5) and (2.6), one can write uniformly the cell problem (1.1) and (1.2) as 

a ( 0wk) 
Oyj aijkl(Y) -~yt j = 0 in P1, aijkl(Y) ~ nj = 0 on 7, (2.7) 

where the function W - ~ is periodic in y E Spr, (W - ~) = O, and 

= C (2.8) 
In solving the problems, it is necessary to bear in mind the definitions (2.5) and (2.6). 
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3. Method of Solving the Cell Problem (2.7). Problem (2.7) is the typical problem of the theory of 
elasticity which is reducible to the beam/rod problems [8-I I]. The author showed [8, 9] that to it corresponds 
the beam problem written under the following conditions: 

(i) the mass and surface forces are equal to zero; 
(2) the rigid-joint conditions are satisfied in the inner nodal joints of the beams and the sums of the 

forces and moments in the nodal joint are equal to zero; 
(3) in the boundary nodal joints, the periodicity conditions W - ~ are satisfied for the displacement 

of the corresponding forces and moments. 
We mean the nodal joints of beams/rods by inner nodes and the nodal joints lying on the PC surfaces 

on which the periodicity conditions are imposed by the boundary nodes. 
The results of [8-11] were obtained for a three-dimensional (not thin) structure. However, since the 

cell problem (2.7) is unique for all cases [for a three-dimensional composite, a thin structure, and a small- 
diameter, only the function ~uar in (2.8) varies], all the results axe extended to the last two cases according 
to the same considerations as in [8-11]. Some difficulties arise in the presence of hinged joints to which the 
problem of elasticity in the form described above does not correspond. Hinged joints can be described within 
the framework of contact problems with the use of variational inequalities. For such problems, the question 
of averaging was solved positively [16, 17]. Consideration of the cell problem for a cellular structure with 
hinged joints leads to a problem with conditions (I) and (3), where the following condition is used instead of 
condition (2): the connection conditions are satisfied in the inner nodes for displacements and forces in the 
absence of moments. 

The behavior of beams and rods can be described in terms of generalized displacements [18] of their 
ends (u+ and u_). 

The axial and cutting forces N and Q and the moments Ma relative to the Oya axis in a beam/rod in 
the absence of mass forces [see condition (1)] axe determined by generalized displacements. This dependence 
can be written both in the local (connected to a beam/rod) and in the yly2y3 coordinate system. 

The connection conditions in the inner points [see condition (2)] can be satisfied by introducing the 
generalized displacements of the nodes. 

The periodicity condition W - ~  [see condition (3)] also can be formulated in terms of the generalized 
displacements of the nodes: 

ui = Ur(i), (3.1) 

where i is a node that  belongs to the PC edge; r ( i )  is the corresponding node belonging to the opposite edge, 
and {ui} are the generalized displacements which correspond to W - ~. 

For inner nodes, the conditions for forces and moments [see condition (2)] are of the form 

(3.2) 
.~eg~ ,ieK~ 

where Ki are the nodes jointed to the node i by the structural elements. 
The periodicity conditions for forces and moments [see condition (3)] in the boundary points have the 

form (3.2) if, for the node i lying at the PC edge, the Ki is replaced by 

Ki U Kr( O. (3.3) 

The displacements W are determined from (3.1)-(3.3) to within a displacement of a solid. Therefore, 
the condition ( W  - t~) = 0 can be replaced by (W) = 0 and is written as follows: 

m 

~ u i = O  (3.4) 
i=l 

(m is the total number of nodes). Condition (3.4) does not arise from the calculation of the integrals in the 
equality (W) = 0 but is equivalent to this equality. 

804 



Equations (3.1)-(3.4) represent an algebraic system of the form 

T{ui} = b .  (3.5) 

System (3.5) is the cell problem written in terms of the theory of materials strength. 
4. Ca lcu la t ion  of Averaged  Rigidities.  Formulas (1.3) and (1.4) assume integration over the 

structural elements of the PC. Integration can be performed by representing the solutions of the cell problem 
via the generalized displacements {ui}. However, it is possible to derive expressions (1.3) and (1.4) via stresses 
at the PC edges, which are similar to the expressions for homogeneous plates and beams. We shall show how 
it can be done. We denote 

a~ a = aon(y)y~, + ao~z(y ) ON~a for beams,  
Oyt 

(4.1) 
ON~aZ for plates. o'~1 ~ = aij,~/~(y)y~ + ai/kt(Y) Oyz 

We note that the quantities a~ a and a~ a~ are equal to aqj, t(OWk/Oyt) , where W is the solution of 
problem (2.7). 

The PC is considered (which does not limit the generality) equal to [-1/2,  1/2] for beams and to 
[-1/2, 1/2] • [-1/2,  1/2] for plates. 

For the stresses aij (by aii we mean a~ a or a~ .~ depending on the problem considered), the cell 
problem can be written as follows: 

Oo'ij _ 0 in P1, aijnj = 0 on % (4.2) 
OYi 

We shall present the method of calculating the quantities .ql+v ~a/~ for a beam. We multiply the equations 
in (4.2) by y/3yl (13 = 2, 3) and integrate by parts the result. With allowance for the boundary condition in 
(4.2), we obtain 

/ 1 / 
1 a'~yl dy + mesSp"----~ u ~ y l y ~ d y  = O. 

- (a~'~YB) mesSp, t,a r + u r _  
(4.3) 

r [see (1.3) and (4.1)] and I'+ and r_  are the opposite edges of the PC (Fig. 1). Here (a~'~'yp) is equal to "~a# 
Thus a~'~ are periodic, yl = 4-1/2 on F• and mesSpr = 1. Then the integral in the last term in (4.3) is equal 
to 

f a ~ y ~ d y  = ~ [(N ur + QVa)liypi + M~.~], 
F+ i6F+ 

(4.4) 

where (N Va + QW)li is the projection of forces in the ith boundary node onto the Oya axis, y/3i is the 
coordinate of the ith boundary node along the Oyo axis, and M ~  is the moment in the ith boundary node 
(13 = 2, 3). 

In the ith boundary node, we have 

NUa=  ~ N(ui, uj), QUa= y] Q(u/,uj), M~.~= y]. M~(ui, ui). 
jEKi jEKi jEKi 

(4.5) 

The integral over/)1 in (4.3), is zero. To be convinced ourselves, we multiply the equations in (4.2) by 
y~ and integrate by parts the result. With allowance for the boundary condition, from (4.2) we obtain 

/ v~ 2 --2 ~ a y l  dy + ~il Yl dy = 0. (4.6) 
�9 ~ r + u r _  
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In the last integral in (4.6), both functions ~il and y2 are periodic in yl. By virtue of this periodicity, the 
integral over F+ t_J F_ equals zero, and thus we arrive at our s ta tement  for i =/3.  

Then we obtain from (4.3) and (4.4) the equality 

sl+u QUa ~ = ~ [(N ~a + ) . y ~  + M~7]. 
iEF+ 

(4.7) 

Similarly, it is possible to derive the expression 

so+ ~ (Noa 
iEF+ 

with the use of the equality [13] 

u~'6_ 
a/~ I yl dy = O. 

P, 

For plates, the expression ~'a/3~ via the boundary values of forces and moments  can be derived by 
multiplying Eq. (4.2) by y3ya and by integrating by parts the results. The  calculations are similar to those 
mentioned above. The  formulas for Sl+u~,/~-f6 and S~ coincide with (4.7), but  it is necessary to take into 
account, that  aij and N,  Q, and Ma have the corresponding subscripts. We note tha t  N,  Q, and Ma are 
determined via (u{}, which are the solutions of problem (3.5). 

5. R o d  S t r u c t u r e s .  We consider a rod cellular structure. The  elements of the cellular structure work 
only in tension-compression. Then we have Q = 0, M~ = 0, and the  axial forces in a rod are as follows: 

N = E(u+ - u_ ,  l ) l / l l l ,  
where E is the rigidity of the  rod, 1 is its directing vector, and I1[ is the length of the vector. 

With allowance for (5.1), Eqs. (3.1) take the form 

(5.1) 

E ~ j ( u / -  u j ,  l /~)I/ i / l l / j l  = O, (5.2) 
j~K~ 

where the subscript ij  refers to the rod from t h e / t h  to the jth node and Eij is the rigidity of this rod. 
For the case considered, from (4.7) we obtain 

= y :  7 = y :  , %  (5.3) 
/El'+ iEI'+ 

The solution (2.4) has the  form [19] 

~, = u, y2, ~2 = ( 1 / 2 ) u [  + y3, ~3 = - y 2  

for a beam considered as a three-dimensional body and 

~, = YlY3, ~3 = - ( l / 2 ) y  2 (5.4) 

for a beam considered as a plane body. 
6. E x a m p l e s  o f  t h e  C a l c u l a t i o n  of  A v e r a g e d  R ig id i t i e s .  Homogeneous Beam. Let the PC consist 

of one element lying on the  Oyl axis. We have y3 = 0, Q = 0, N n  = E, and M~ '3 = D, where E and D is the 
tensile and flexural rigidities of the beam. 

A Beam with an I-shaped PC. A plane I-shaped PC is shown in Fig. 2 (the deformed PC is shown by 
the dashed curve). By virtue of symmetry  of the PC and the presence of symmetry  in the function (5.4), the 
strain of the PC is reduced to tension (compression) of the upper (lower) beam of the PC and to displacement 
of the PC along the axis as a solid. With allowance for formula (5.4), we obtain Q1 = 0, M 13 = 0~ and 
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N/13 = 4-(1/2)E for the upper  (lower) beam, and y3i = 4-(1/2)H. According to (4.7), the flexural rigidity 
equals 

i----1 

We consider the planar cellular structure depicted in Fig. 3 (P1 = [-1,  1] x [ -1 ,  1]) as a rod structure 
when A are the hinges and as a beam structure when A are the rigid joints. 

Rod Structure. With  allowance for symmetry, the problem is reduced to a calculation of strains with 
the PC nodes displaced in the  direction of the Oyl axis. The upper  nodes are displaced from each other, 
and the lower nodes to each other. The forces in the upper  and lower horizontal rods equal :F(1/2)E. With 
allowance for ya = 4-1, from (5.3) we obtain the flexural rigidity: Sa2s = El.  

Beam Structure. It is necessary to solve the tension-flexure problem of a system of beams. From the 
solution of this problem and from (4.7), it follows the expression for flexural rigidity 

D (6.1) 
= E, + + I) 6D/E + S/v " 

Here E1 is the tensile rigidity of the horizontal beams, which is assumed to be equal for both beams, and E 
and D are the tensile and flexural rigidities of the sloping beams, which also are assumed to be equal. As is 
seen, if the flexural rigidity is small (D << E), one can ignore the last term in (6.1) in comparison with El 
for E and E1 of the same order. 

7. T h e r m o e l a s t i c  C h a r a c t e r i s t i c s  of  t h e  B e a m s .  The problem of thermoelasticity was considered 
for three-dimensional composi te  bodies in [20, 21], for plates in [22-24], and for beams in [25]. The cell problem 
of thermoelasticity has the  form [22-25] 

0 (ailkl(y) ON~ + / ~ i / ( y ) ) = 0  in P1, 
Oyj 

-~y/-t- = on 7, 

where N~ is a periodic function [see (1.1) and (1.2)]. 
The thermoelastic characteristics are calculated by the formulas 

ON~'x v\ + 

for beams and 

u = ( (  + aa#ki(y) ON~]y~) 
a<lj \ \ / 7 < l J ( y ) ( g y ,  ] 

for plates. The superscript v takes the values 0 and 1 (for the values of the subscripts a and/~ see in Sec. 1). 
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Fig. 4 

Introducing the stresses a/j =/3ij(y) + aiitl(y)ON~/Oyl, we obtain the cell problem in the form (4.2). 
Here, the N O can be interpreted as displacements. 

As a result, we obtain that a ] ,  a~, a~,3,0 and a~t~ are specified by formulas (4.7), in which N, Q, and 
M~ are determined from the solution of the cell problem of thermoelasticity. This problem is formed on the 
basis of conditions (1)-(3). The quantities N, Q, and M~ for the cellular-structure members are found from 
the governing relations of thermoelastic rods/beams: 

N = E ( e -  30), M = D ( p -  /3*O), 

where E and D are the tensile and flexural rigidities and/3 and/3* are the coefficients of thermal (axial and 
flexural) expansion. For homogeneous cylindrical beams, we have/3* = 0. 

8. T h e r m o e l a s t i e  R o d  Beams  and  Control  of The i r  Charac ter i s t ics .  We consider a small- 
diameter structure formed from rods. The governing equations for this structure as being a one-dimensional 
beam, are as follows [13]: 

N A~ + A~pa + Bo~o + CO, M,~ A ~  + 2 = = Aa#p~ + Ba~o + C,~0, 

= Ae + A'~pa + Bop + CmO, (8.1) 

where N, M~, and ~ are the axial force, the flexural moments, and the torsional moment, respectively. 
As follows from (8.1), the temperature can cause all kinds of deformation : axial elongation- 

compression, flexure, and torsion. 
Equations (8.1) can be derived from (5.3). The temperature enters (5.3) implicitly when (5.2) is replaced 

by the equations 

Eq((ui  - u j , l i j ) l l l i j t -  3)1i./= O. 
i~Kj 

With a variable beam structure (the connections {Ki} and the rigidities {E/j}), it is possible to 
formulate the problem of control: to assign specified values to the averaged rigidities in (8.1) owing to the 
choice of the characteristics of the structural elements of the beam. We shall give several examples of qualitative 
character, which show the possible results of control. 

A PC can consist of several types of structures (we call them circles) located on the yl axis (Fig. 4). 
Below, we illustrate circles with distinct mechanical properties: 

(1) The section is uniformly elongated during heating in the direction of the structure's axes (all the 
vertical rods are identical) (Fig. 4a); 

(2) The section is extended during heating and is curved in the direction of the element c-d, which has 
a different coefficient of thermal expansion (Fig. 4a) compared to other elements; 

(3) The section is extended during heating and is twisted about the yi axis (Fig. 4b). The circles' 
members made from different materials are shown in Fig. 4 by the lines of different thickness. 

Circles of the cited types are connected with each other. The three-circle cellular structure obtained 
imparts the averaged beam the ability to extend, bend, and twist during heating. 
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